Design Sovereignty at the Edge and for the Device

- A European Perspective -

Dr.-Ing. Gerd Teepe

T3-Technologies

Agenda

- What is T3-Technologies?
- The Semiconductor Growth Engine
- Semiconductor Design Bridge between Applications and Technology
- Core Hardware
- What Europe should focus on

T3-Technologies

Engineering Services in Microelectronics

- Marketing: Product Description and Positioning
- Design Projects: Construction, Setup and Management
- Technology Consulting: Technology Choices and Benchmarks
- R&D: Project Construction, Partner Search&Selection, Public-Funding, Project Management

Experience of CEO:

- 38 years of Experience in the Semiconductor Industry
- Diploma and PhD fom RWTH Aachen University (1981/1986)
- NEC-Tokyo: Research in fault tolerant microprocessors (1986/87)
- Motorola: Design, Design Management, Marketing, Product Management (1987-2004)
- AMD: Direction of Dresden Design Center (2004 2009)
- GLOBALFOUNDRIES: Design Enablement Center, Technology Marketing (2010 2018)

Value Chains building on Electronics

Worldwide Electronics value chain in 2017

Market service providers 43 135 B€ Transportation, Health, Installation, Maintenance, Repair, etc. Telecom operators, Internet. Aero/Def/Secu Industrial equip. **Automotive** IT, Cloud. industry Industry Industry etc. 1 419 B€ 1 400 B€ 1 864 B€ Stand alone electronics **Embedded electronics** PC, Telecoms, Audio & Video Auto, Indus, Medical, Aero/Def/Sec

Total electronic equipment 1 947 B€

Electronic boards

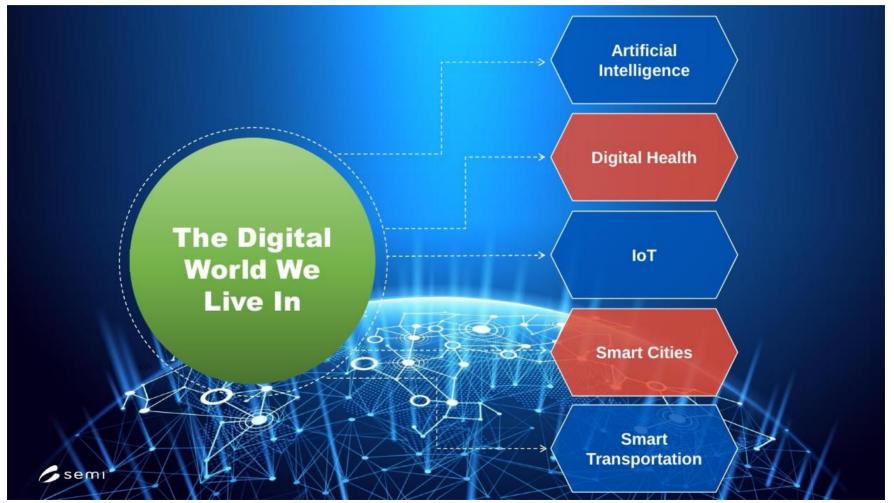
1 225 B€

Semiconductors Other elect. components
375 B€ 215 B€

Materials & tools SC Other 86 B€ 34 B€

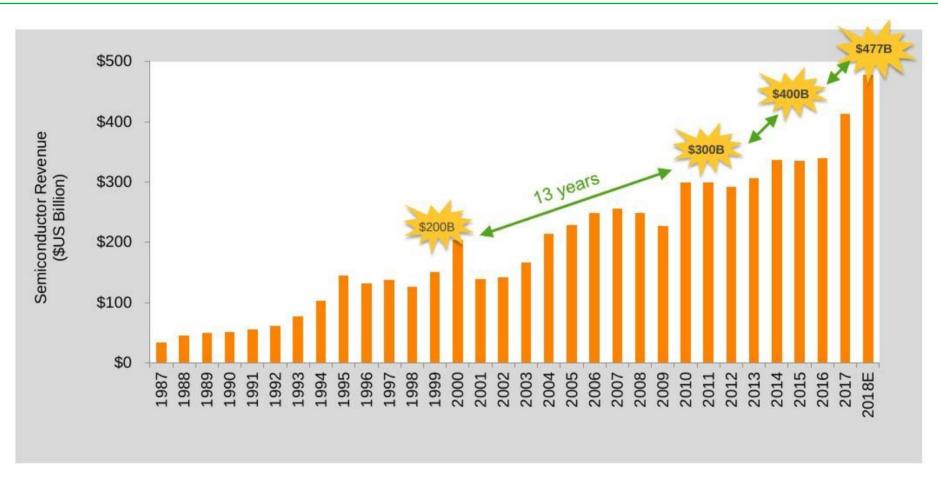
Source: DECISION Etudes & Conseil

984 B€


Electronics Value Chain

- Strong Applications Industries in Europe
- Significant Contributions globally in Materials and Tools (e.g. ASML, Soitec, Siltronic, ...)
- Strong R&D in Materials
- Excellent European Infrastructure

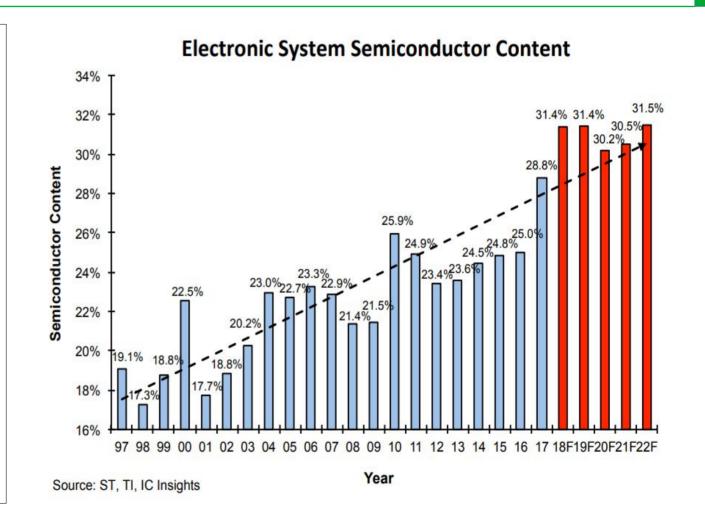
963 B€


Semiconductor Growth Factors

Source: SEMI-Europe

Semiconductor Industry Revenues

Source: SIA/WSTS historical year end reports, WSTS Autumn Forecast November 2018


Semiconductor Content Growth

Source: ICINSIGHTS, July 2018 report

The electronic system content is on the rise.

Microelectronics is key in defining the product features.

It has been the case for
Telecom products (like
smartphones) but now we see
it happening for industrial and
consumer products.
(Automobiles, Home-robotics,
Toys&Games, White Goods,
Medical Applications)

Europe is in a Sandwich Position

Pressure from the West

USA

Disruptive
Business
Models and
smart value
chains for
the entire
world

EU

Industrial supplier of the world (automotive, machine building, ...)

Asia-Pac

Manufacturer for the world (and moving forwared) Pressure from the East

Source: GLOBALFOUNDRIES

Design Bridges from Technology into Application

Technology

22FDX

14FF

RF

Applications

Automotive

Industrial

Energy

Telecom

IoT

Sovereignity-Topics for Europe

Technology Sovereignty

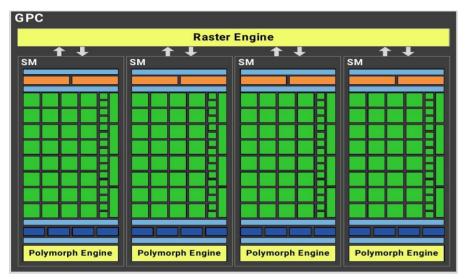
- Architectures
 (Microprocessor-Cores, Networks, Connectivity)
- Semiconductor Manufacturing
- Packaging & Assembly
- Supply Chain
- Security
- Data Sovereignty

Application Sovereignty

- Artificial Intelligence
- 5G/6G (Network Applications)
- IoT
- Digital Health
- Transportation
- Smart Cities

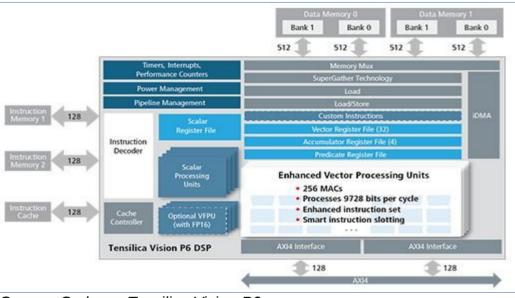
Scaling in Computing

Entity	Multiple	1st App	Scale-up			
CPU	Multi-Core	PC	Compute- Cluster	Data-Center	Cloud	
		Network Switch	Network		Edge	
		Embedding Device				
Simple CPU	GPU (SIMD)		Scale up			
MAC	TPU (SIMD)	Co-				
Mac or Neuro	NPU (MIMD)	Processing				



<u>Distributed</u> versus <u>Parallel Computing</u>

Attribute	Parallel Computing		Distributed Computing	Neuromophic
Example system topology	SMP	MPP	1) Internet 2) Data Center	Human Brain
Programming	P-threads OpenMP	Message Passing (MPI)	HTTP XML/SOA Mash-up APIs	Machine Learning
Industry leaders	IBM, Sun, HP servers	HPC Niche	Google, Yahoo, MS Live	- none as of yet -
Scalability	Poor	Moderate	Outstanding	Outstanding
Fault Tolerance	Failures are fatal	Failures are feared	Failures are <u>assumed</u> in the architecture	Failures are <u>worked</u> into the production system (yield)
Progress assessment over last 30 yrs	Very poor	Moderate	Substantial	Significant progress since the early analog work

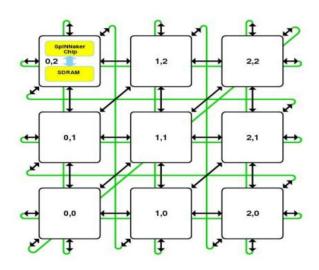

Parallel Computing

Source: Nvidia GPC

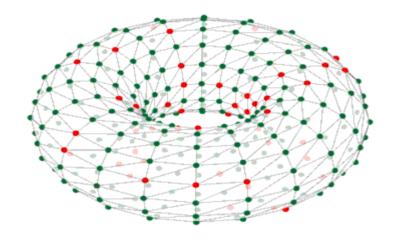
GPU Engines

- Up to 5000 integer cores
- Integer Data Flows
- Main Application: Gaphics-Shading

Source: Cadence Tensilica Vision-P6


CNN-Engines

- 256 MAC units (and more)
- SIMD-Architecture
- Main Application: Image Recognition


Neuromophic Computing

Modeling the Human Brain: Computing within the Memories

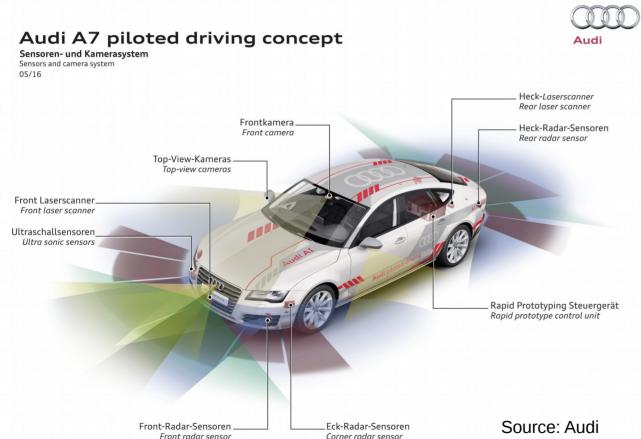
The **SPINNACKER** Project

Up to 500.000 connected ARM processors

The <u>Humain Brain Project (HBP)</u>

Torus of connected compute elements including memories

USA: Darpa Synapse Program



Core Landscape Today

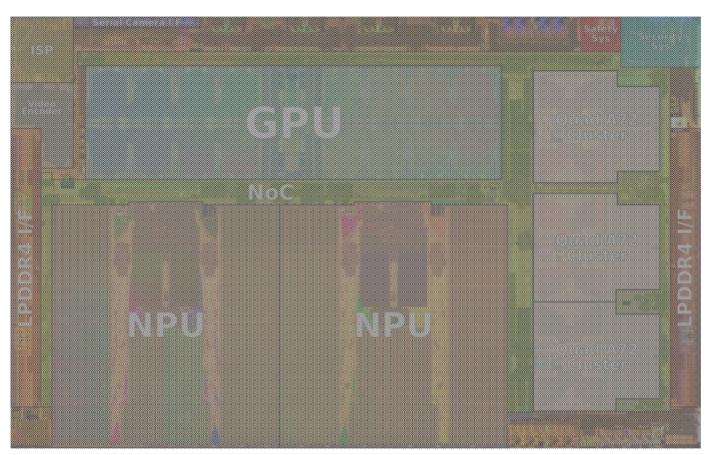
Core Family	Source	AI	5G-6G	Device	Edge	Cloud	Comment
X86	Intel, AMD				0	•	PC, Server, Cloud
ARM	ARM	0	•	•	•	0	Initially from Telecom-Device
RISC-V	Open Source	•	•	•	•	0	the new LINUX for hardware?
Tensilica	Cadence	•	0	0			Intended for flexibility in design
Tegra	Nvidia	•		•	0		Proven Al architecture
ARC	Synopsys		0	•			Will this break through?

Audi on the path to autonomous vehicles

Audi Architecture

- Sensor based (Image, Radar, Lidar)
- **Data Fusion**
- ZFAS central unit
- Massively parallel computing

ZFAS – parallel computing architecture


Source: Audi

AUDI ZFAS Electronic Control Unit

- Driver Assistance Controller
- Data-Fusion using Al-Methodology
- Nvidia Tegra K1
 Architecture
- Automotive Qualification
- Automotive Power Footprint

Tesla FSD Chip

Source: TESLA

FSD – Full Self Driving

- 14nm Finfet Technology
- 144 TOPS
- 72 Watt TDP
- 12 ARM Cortex A72
- 2 NPU (Neural Network Accelerator
- LPDDR4-I/F
- Encryption
- Safety-Supervision

Take-Aways

- Design is the bridge between Product and Technology
- General Purpose Devices are vanishing If you don't design it, you don't get it.
- Sovereignity means choice of Value Chain in:
 - Production
 - Design
 - Tooling
 - Materials
 - Packaging
- "Open Source" is starting to become an alternative

Thank You