

Energy-efficient data processing in smart networks

Jörg-Peter Elbers, SVP Advanced Technology Networld2020 Stakeholder Workshop, Dresden, Oct 2nd 2019

ADVA at a glance

Background

- Headquartered in Munich, Germany
- Founded in 1994, >1,850 employees
- Over EUR 0.5 billion turnover

Our vision

Virtualization and software are keys to differentiated solutions, but hardware will remain strategically important

Our mission

Being your trusted partner for connecting, extending and assuring the cloud

Open optical networking

Packet edge & NFV

Network synchronization

Innovation – speed for customers – trusted partner

Smart networks - Bringing ICT together

zero-touch operation

instantaneous response

access anywhere

intrinsic security

sustainable capacity growth

ICT energy consumption is raising

Source: Heise Technology Review 7/2019 Data: A. Andrae, DOI: 10.13140/RG.2.2.25103.02724

We need to drive more efficiency AND new approaches

Microprocessor scaling continues ...

42 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Most recent advances by increasing the number of cores

... yet processor performance saturates

Trend to domain-specific architectures (GPUs, TPUs, FPGA accelerators, ...)

Some examples

Cloud TPU v3 Pod (Beta): 100 PetaFLOPS, 32 TB HBM, 2D mesh network (ring)

Google Edge TPU

Communication challenges increase

"In parallel processing, 1Mbps of I/O is required for every 1MHz of computation." *Amdahl's lesser known law*

High-bandwidth and low power connectivity is needed

Deep-dive: Flexible coherent optics

The gold standard in WDM networks at 100Gbps and beyond

Coherent optical DSP evolution

Voar		2010	201	2	2014	2016 17	2018 10	2020-21
1041		2010	201	DC/DA	C PARAMETERS	2010-17	Next Generations	
POWER (N	IAX)	<2W/chan	nel <1.5W/c	hannel	~1W/channel	<1W/channel	<<1W/channel	TBC
RESOLUTION		8-bit	8-b	it	8-bit	6-8-bit	6-10 bit	6-10 bit
CONVERSION RATE		56GSa/s	55-650	6 Sa/s	55-92GSa/s	34-128G Sa/s	34 to >140GSa/s	34 to >160GSa/s
ENOB		5.5	>5.	7	>6	5.5 to 6.5	5.5 to > 8.5	5.5 to >8.5
BANDWIDTH (-3 d B)		>16GH:	z >19G	Hz	>26GHz	>35GHz	>42GHz	>49GHz
				ASI	C RELATED			
TECHNOLO	OGY*	65nm CM	OS 40nm C	MOS	28nm CM OS	16nm FinFET	7nm FinFET	5nm FinFET
DIGITAL GATES (DSP)		>50M	>70M		>200M	>400M	>1000M	>1500M
ADDED FEATURES				1/2 & 1/4 rate, ASV	1/2 & 1/4 rate, ASV	1/2 & 1/4 rate, ASV, others	1/2 & 1/4 rate, ASV, others	
PACKAGE SIZE		35x35m	nm 37.5x37.5mm		37.5x37.5m	25x25mm	≤25x25mm	≤25x25mm
COHERENT APPL.		100Gbp	s 200G	bps	400Gbps	$400Gbps \leq 1Tbps$	$\leq 2Tbps$	$\geq 2Tbps$
							ASV: Ac	laptive Source V
100G Coherent	200 Cobe)G	400G		400G Coherent	600G - 800G Coherent	1.2T - 1.6T Coherent	>>1T Cohere

Leading edge **CMOS** technology

Leverage for future radio modems?

400G, DP-16QAM	1x 800G, DP-64QAM	2x 800G, DP-64QAM	1x 1000G, DP-256QAM 2x 1000G, DP-256QAM					
ADC DAC 4ch 4ch ENOB 6 ENOB	ADC 4ch 6.5ENOB 6.5 ENOB	ADC 8ch DAC 8ch 6.5 ENOB 6.5 ENOB	ADC 4-ch DAC 4-ch 7 ENOB 7 ENOB					
DSP	DSP	DSP	DSP					
56G SerDes (8-ch)	56G SerDes (16-ch)	56G SerDes (32-ch)	56G SerDes (≥20-ch)					
Line Card	Line Card	Line Card	Line Card					
	Source: Socionext, 2019							

ADC 8ch 6 ENOB 8ch 6 ENOB Line Card Line Card 5 a a a a

1x

Coherent

2x 200G, DP-16QAM

Coherent

1x 100G, DP-QPSK

Line Card

Coherent

1x 200G, DP-16QAM

ADC 4ch

5.7 ENOB

Integrated coherent TX-RX optical subassembly

(reflow-soldering capable)

Electro-photonic integration 2.0

Silicon as base platform

Non-hermetic, uncooled optical transceiver chiplets

Optical & electronic integration benefits

Lower footprint, lower power, lower cost per bit

WDM transport platform evolution

Increasing capacity while lowering the energy per bit

From chip to chiplet integration

One process design point for all product Monolithic integration Product restricted by reticle Multiple processes optimized for individual IPs Multi-chip integration with advanced packaging Product unconstrained by reticle

Source: Intel, 2019

Systems in a package (SiP) comprising different building blocks

Optical transceiver chiplet integration

100G intra-office transceiver Monolithic ePIC chiplet

Source: Sicoya, 2016

See also: https://www.facebook.com/ CoPackagedOptics Collaboration

Co-packaging optics with switch, routing, or processing dies

Main take-aways

Efficient data processing will play a key role in future networks

Domain-specific architectures and the right level of integration are necessary

Optical connectivity will play an increasing role

Network, system, and component research need to go hand-in-hand

Research areas (architecture & design, hardware, software):

- Novel SiP/SoC approaches (multiple technologies, heterogeneous materials)
- Advanced (optical) transceiver chiplets and related digital signal processors
- Optical-wireless integration (analog/digital) towards "optical radios"
- New processing nodes for edge applications (AI inference, video pre-processing, ...)
- HW-based security functions

Thank you

jelbers@advaoptical.com

IMPORTANT NOTICE

The content of this presentation is strictly confidential. ADVA Optical Networking is the exclusive owner or licensee of the content, material, and information in this presentation. Any reproduction, publication or reprint, in whole or in part, is strictly prohibited.

The information in this presentation may not be accurate, complete or up to date, and is provided without warranties or representations of any kind, either express or implied. ADVA Optical Networking shall not be responsible for and disclaims any liability for any loss or damages, including without limitation, direct, indirect, incidental, consequential and special damages, alleged to have been caused by or in connection with using and/or relying on the information contained in this presentation.

Copyright © for the entire content of this presentation: ADVA Optical Networking.